Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Viruses ; 14(6)2022 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-35746655

RESUMEN

Bunyaviruses cause diseases in vertebrates, arthropods, and plants. Here, we used high-throughput RNA-seq to identify a bunya-like virus in rice plants showing the dwarfing symptom, which was tentatively named rice dwarf-associated bunya-like virus (RDaBV). The RDaBV genome consists of L, M, and S segments. The L segment has 6562 nt, and encodes an RdRp with a conserved Bunya_RdRp super family domain. The M segment has 1667 nt and encodes a nonstructural protein (NS). The complementary strand of the 1120 nt S segment encodes a nucleocapsid protein (N), while its viral strand encodes a small nonstructural protein (NSs). The amino acid (aa) sequence identities of RdRp, NS, and N between RDaBV and viruses from the family Discoviridae were the highest. Surprisingly, the RDaBV NSs protein did not match any viral proteins. Phylogenetic analysis based on RdRp indicated that RDaBV is evolutionarily close to viruses in the family Discoviridae. The PVX-expressed system indicated that RDaBV N and NS may be symptom determinants of RDaBV. Our movement complementation and callose staining experiment results confirmed that RDaBV NSs is a viral movement protein in plants, while an agro-infiltration experiment found that RDaBV NS is an RNA silencing suppressor. Thus, we determined that RDaBV is a novel rice-infecting bunya-like virus.


Asunto(s)
Bunyaviridae , Oryza , Virus no Clasificados , Animales , Bunyaviridae/genética , Virus ADN/genética , Genoma Viral , Genómica , Oryza/genética , Filogenia , ARN Viral/genética , ARN Polimerasa Dependiente del ARN , Reoviridae , Proteínas Virales/química , Proteínas Virales/genética , Virus no Clasificados/genética
2.
Viruses ; 14(6)2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35746792

RESUMEN

Alfalfa is an important perennial forage crop in Idaho supporting dairy and cattle industries that is typically grown in the same field for as many as 4 years. Alfalfa stands of different ages were subjected to screening for viruses using high-throughput sequencing and RT-PCR. The two most common viruses found were alfalfa mosaic virus and bean leafroll virus, along with Medicago sativa amalgavirus, two alphapartitiviruses, and one deltapartitivirus. Additionally, a new flavi-like virus with an unusual genome organization was discovered, dubbed Snake River alfalfa virus (SRAV). The 11,745 nt, positive-sense (+) RNA genome of SRAV encodes a single 3835 aa polyprotein with only two identifiable conserved domains, an RNA-dependent RNA polymerase (RdRP) and a predicted serine protease. Notably, unlike all +RNA virus genomes in the similar size range, the SRAV polyprotein contained no predicted helicase domain. In the RdRP phylogeny, SRAV was placed inside the flavi-like lineage as a sister clade to a branch consisting of hepaci-, and pegiviruses. To the best of our knowledge, SRAV is the first flavi-like virus identified in a plant host. Although commonly detected in alfalfa crops in southern Idaho, SRAV sequences were also amplified from thrips feeding in alfalfa stands in the area, suggesting a possible role of Frankliniella occidentalis in virus transmission.


Asunto(s)
Virus ARN , Virus no Clasificados , Animales , Bovinos , Productos Agrícolas/genética , Virus ADN/genética , Medicago sativa , Poliproteínas , ARN , Virus ARN/genética , ARN Polimerasa Dependiente del ARN , Ríos , Virus no Clasificados/genética
3.
Lancet Microbe ; 3(1): e32-e40, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35544114

RESUMEN

BACKGROUND: There is anecdotal evidence for Lassa virus persistence in body fluids. We aimed to investigate various body fluids after recovery from acute Lassa fever, describe the dynamics of Lassa virus RNA load in seminal fluid, and assess the infectivity of seminal fluid. METHODS: In this prospective, longitudinal, cohort study we collected plasma, urine, saliva, lacrimal fluid, vaginal fluid, and seminal fluid from Lassa fever survivors from Irrua Specialist Teaching Hospital in Edo State, Nigeria. Inclusion criteria for participants were RT-PCR-confirmed Lassa fever diagnosis and age 18 years or older. Samples were taken at discharge from hospital (month 0) and at months 0·5, 1, 3, 6, 9, 12, 18, and 24 after discharge. The primary objective of this study was to quantitatively describe virus persistence and clearance and assess the infectivity of seminal fluid. Lassa virus RNA was detected using real-time RT-PCR. Infectivity was tested in cell culture and immunosuppressed mice. We used a linear mixed-effect model to analyse the dynamics of virus persistence in seminal fluid over time. FINDINGS: Between Jan 31, 2018, and Dec 11, 2019, 165 participants were enrolled in the study, of whom 159 were eligible for analysis (49 women and 110 men). Low amounts of Lassa virus RNA were detected at month 0 in plasma (49 [45%] of 110 participants), urine (37 [34%]), saliva (five [5%]), lacrimal fluid (ten [9%]), and vaginal fluid (seven [21%] of 33 female participants). Virus RNA was cleared from these body fluids by month 3. However, 35 (80%) of 44 male participants had viral RNA in seminal fluid at month 0 with a median cycle threshold of 26·5. Lassa virus RNA remained detectable up to month 12 in seminal fluid. Biostatistical modelling estimated a clearance rate of 1·19 log10 viral RNA copies per month and predicted that 50% of male survivors remain Lassa virus RNA-positive in seminal fluid for 83 days after hospital discharge and 10% remain positive in seminal fluid for 193 days after discharge. Viral RNA persistence in seminal fluid for 3 months or more was associated with higher viraemia (p=0·006), more severe disease (p=0·0075), and longer hospitalisation during the acute phase of Lassa fever (p=0·0014). Infectious virus was isolated from 48 (52%) of 93 virus RNA-positive seminal fluid samples collected between month 0 and 12. INTERPRETATION: Lassa virus RNA is shed in various body fluids after recovery from acute disease. The persistence of infectious virus in seminal fluid implies a risk of sexual transmission of Lassa fever. FUNDING: German Federal Ministry of Health, German Research Foundation, Leibniz Association.


Asunto(s)
Fiebre de Lassa , Virus no Clasificados , Animales , Estudios de Cohortes , Virus ADN/genética , Femenino , Humanos , Fiebre de Lassa/diagnóstico , Estudios Longitudinales , Masculino , Ratones , Nigeria/epidemiología , Estudios Prospectivos , ARN Viral/genética , Virus no Clasificados/genética
4.
Viruses ; 14(5)2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35632646

RESUMEN

A novel phlebovirus, Punique virus (PUNV), was discovered and isolated in 2008 from sandflies from Northern Tunisia. PUNV is now classified as a unique member of the Punique phlebovirus species within the Phlebovirus genus in the Phenuiviridae family (order bunyavirales). In this study, we aimed to investigate the transmission dynamics of PUNV in Tunisia. Sandflies were collected during two consecutive years, 2009 and 2010, by CDC light traps. In 2009, a total of 873 sandflies were collected and identified to the species level. Phlebotomus perniciosus was the most abundant species. One pool of P. perniciosus females collected in autumn contained PUNV RNA, yielding an infection rate of 0.11%. The population densities of circulating sandfly species were assessed during May-November 2010 in Northern Tunisia by using sticky traps. Phlebotomus (Larroussius) perniciosus (71.74%) was the most abundant species, followed by Phlebotumus (Larroussius) longicuspis (17.47%), and Phlebotumus (Larroussius) perfiliewi (8.82%). The densities of dominant sandfly species were found to peak in early spring and again in the autumn. In 2010, species identification was not performed, and sandflies were only discriminated on the basis of sex and collection date. Out of 249 pools, three contained PUNV RNA. Each positive pool allowed virus isolation. The three pools of female sandflies containing PUNV RNA were collected in autumn with an infection rate of 0.05%. These findings provide further evidence that P. perniciosus is the main vector of PUNV in Tunisia, and this phlebovirus is endemic in Tunisia. Our findings provided strong evidence of intensive circulation of PUNV in sandflies and hosts through a viral infection buildup process between sandfly vectors and hosts starting at the beginning of the activity of sandflies in spring to reach a maximum during the second main peak in autumn.


Asunto(s)
Phlebotomus , Phlebovirus , Psychodidae , Virus no Clasificados , Animales , Virus ADN/genética , Femenino , Phlebotomus/genética , Phlebovirus/genética , ARN Viral/genética , Túnez/epidemiología , Virus no Clasificados/genética
5.
Viruses ; 14(5)2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35632662

RESUMEN

Metagenomic approaches used for virus diagnostics allow for rapid and accurate detection of all viral pathogens in the plants. In order to investigate the occurrence of viruses and virus-like organisms infecting grapevine from the Ampelographic collection Kromberk in Slovenia, we used Ion Torrent small RNA sequencing (sRNA-seq) and the VirusDetect pipeline to analyze the sRNA-seq data. The used method revealed the presence of: Grapevine leafroll-associated virus 1 (GLRaV-1), Grapevine leafroll-associated virus 2 (GLRaV-2), Grapevine leafroll-associated virus 3 (GLRaV-3), Grapevine rupestris stem pitting-associated virus (GRSPaV), Grapevine fanleaf virus (GFLV) and its satellite RNA (satGFLV), Grapevine fleck virus (GFkV), Grapevine rupestris vein feathering virus (GRVFV), Grapevine Pinot gris virus (GPGV), Grapevine satellite virus (GV-Sat), Hop stunt viroid (HSVd), and Grapevine yellow speckle viroid 1 (GYSVd-1). Multiplex reverse transcription-polymerase chain reaction (mRT-PCR) was developed for validation of sRNA-seq predicted infections, including various combinations of viruses or viroids and satellite RNA. mRT-PCR could further be used for rapid and cost-effective routine molecular diagnosis, including widespread, emerging, and seemingly rare viruses, as well as viroids which testing is usually overlooked.


Asunto(s)
ARN Pequeño no Traducido , Viroides , Virus no Clasificados , Vitis , Virus ADN/genética , Enfermedades de las Plantas , Satélite de ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN , Viroides/genética , Virus no Clasificados/genética
6.
Virus Res ; 317: 198817, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35598773

RESUMEN

A novel dsRNA mycovirus was found in Fusarium solani (F. solani) strain NW-FVA 2572. The fungus was originally isolated from a root, associated with stem collar necrosis of Fraxinus excelsior L. The viral genome is composed of four segments, which range from around 3.5 kbp to 1.7 kbp (RNA 1: 3522 bp; RNA 2: 2633 bp; RNA 3: 2403 bp; RNA 4: 1721 bp). The segments share a conserved and capped 5'-terminus and their 3'-termini are polyadenylated. Protein sequencing showed that the viral RdRP is encoded on segment 1. The virus clusters together with Aspergillus mycovirus 341 (AsV341), Aspergillus heteromorphus alternavirus 1 (AheAV1), Aspergillus foetidus virus-fast (AfV-F) and Cordyceps chanhua alternavirus 1 (CcAV1). As highest value, the RdRP showed 61.50% identical amino acids with P1 of the AfV-F. The capsid protein is encoded on segment 3, the proteins encoded on RNA 2 and RNA 4 are of unknown function. Segment 4 harbors large UTRs (186 nts at the 5'-terminus and 311 nts at the 3'-terminus). Based on its genome organization and phylogenetic position, the virus is suggested to be a new member of the proposed family Alternaviridae and was therefore named Fusarium solani alternavirus 1 (FsAV1). This is the first report of an Alternavirus infecting a fungus of the F. solani species complex (FSSC).


Asunto(s)
Virus Fúngicos , Fusarium , Virus ARN , Virus no Clasificados , Fusarium/genética , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , ARN Bicatenario/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN , Virus no Clasificados/genética
7.
Viruses ; 14(4)2022 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-35458566

RESUMEN

Plant infecting emaraviruses have segmented negative strand RNA genomes and little is known about their infection cycles due to the lack of molecular tools for reverse genetic studies. Therefore, we innovated a rose rosette virus (RRV) minireplicon containing the green fluorescent protein (GFP) gene to study the molecular requirements for virus replication and encapsidation. Sequence comparisons among RRV isolates and structural modeling of the RNA dependent RNA polymerase (RdRp) and nucleocapsid (N) revealed three natural mutations of the type species isolate that we reverted to the common species sequences: (a) twenty-one amino acid truncations near the endonuclease domain (named delA), (b) five amino acid substitutions near the putative viral RNA binding loop (subT), and (c) four amino acid substitutions in N (NISE). The delA and subT in the RdRp influenced the levels of GFP, gRNA, and agRNA at 3 but not 5 days post inoculation (dpi), suggesting these sequences are essential for initiating RNA synthesis and replication. The NISE mutation led to sustained GFP, gRNA, and agRNA at 3 and 5 dpi indicating that the N supports continuous replication and GFP expression. Next, we showed that the cucumber mosaic virus (CMV strain FNY) 2b singularly enhanced GFP expression and RRV replication. Including agRNA2 with the RRV replicon produced observable virions. In this study we developed a robust reverse genetic system for investigations into RRV replication and virion assembly that could be a model for other emaravirus species.


Asunto(s)
Infecciones por Citomegalovirus , Rosa , Virus no Clasificados , Virus ADN/genética , Proteínas Fluorescentes Verdes/genética , Mutación , Enfermedades de las Plantas , ARN Guía de Kinetoplastida , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Rosa/genética , Virus no Clasificados/genética
8.
Arch Virol ; 167(6): 1481-1485, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35451686

RESUMEN

The complete genome sequence of a new caulimovirus in Pueraria montana was determined using high-throughput sequencing. The 7,572 nucleotide genome of pueraria virus A (PVA) contains genes that encode a movement protein, an aphid transmission factor, a virion-associated protein, a coat protein, a protease + reverse transcriptase + ribonuclease H, and a transactivator/viroplasmin protein, as well as two intergenic regions, which are all common features of members of the genus Caulimovirus. A sequence alignment revealed that the complete genome of PVA shares 66.82% nucleotide sequence identity with strawberry vein banding virus (GenBank accession no. KX249738.1). The results of phylogenetic analysis and the observation that the nucleotide sequence of the polymerase coding region differed by more than 20% indicated that PVA is a member of a new species the genus Caulimovirus, family Caulimoviridae.


Asunto(s)
Caulimoviridae , Pueraria , Virus no Clasificados , Caulimoviridae/genética , Caulimovirus , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas , Virus no Clasificados/genética
9.
Virus Res ; 315: 198779, 2022 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-35427675

RESUMEN

Melon aphid-borne yellows virus (MABYV), a member of the genus Polerovirus in the family Solemoviridae, has widely spread in recent years and cause yellowing disease on cucurbits. Here, we obtained the complete genome sequence of MABYV bottle guard (Lagenaria siceraria) isolate MABYV-KF, and constructed its infectious cDNA clone under the control of the cauliflower mosaic virus (CaMV) 35S promoter by Gibson assembly. The 5,677 nt of its genome shared more than 94.00% sequence identity with the two known MABYV isolates. The inoculation results showed that MABYV infectious cDNA clone could systemically infect bottle guard, cucumber and muskmelon plants, and cause typical yellowing symptom. The virus progeny from the infectious clone could be transmitted between bottle guard plants by aphid. Further analyses revealed that point mutations in the F-box-like motif (Pro57) and C-terminal conserved sequence (Phe211) of P0 cause low viral accumulations in systematic leaves and failed to induce symptom. The infectious clone will be potentially a tool in the investigation of viral pathogenesis, virus-virus interaction and virus-host/-vector interactions.


Asunto(s)
Áfidos , Cucurbita , Virus no Clasificados , Agrobacterium/genética , Animales , Células Clonales , ADN Complementario/genética , Virus no Clasificados/genética
10.
J Virol ; 96(8): e0039922, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35389266

RESUMEN

Hepatitis B virus (HBV) contains a partially double-stranded, relaxed circular (RC) DNA genome synthesized within a nucleocapsid (NC) in the host cell cytoplasm. The release of RC DNA from the NC, in an ill-defined process called uncoating, to the nucleus is required for its conversion to the covalently closed circular (CCC) DNA, the viral episome serving as the transcriptional template for all viral RNAs necessary for replication and, thus, essential for establishing and sustaining viral infection. In efforts to better understand uncoating, we analyzed HBV core (HBc) mutants that show various levels of nuclear CCC DNA but little to no cytoplasmic RC DNA. We found that RC DNA could be synthesized by these mutants outside the cell, but in contrast to the wild type (wt), the mutant NCs were unable to protect RC DNA from digestion by the endogenous nuclease(s) in cellular lysates or exogenous DNase. Subcellular fractionation suggested that the major RC DNA-degrading activity was membrane associated. Digestion with sequence-specific and nonspecific DNases revealed the exposure of specific regions of RC DNA from the mutant NC. Similarly, treatment of wt NCs with a core inhibitor known to increase CCC DNA by affecting uncoating also led to region-specific exposure of RC DNA. Furthermore, a subpopulation of untreated wild type (wt) mature NCs showed site-specific exposure of RC DNA as well. Competition between RC DNA degradation and its conversion to CCC DNA during NC uncoating thus likely plays an important role in the establishment and persistence of HBV infection and has implications for the development of capsid-targeted antivirals. IMPORTANCE Disassembly of the hepatitis B virus (HBV) nucleocapsid (NC) to release its genomic DNA, in an ill-understood process called uncoating, is required to form the viral nuclear episome in the host cell nucleus, a viral DNA essential for establishing and sustaining HBV infection. The elimination of the HBV nuclear episome remains the holy grail for the development of an HBV cure. We report here that the HBV genomic DNA is exposed in a region-specific manner during uncoating, which is enhanced by mutations of the capsid protein and a capsid-targeted antiviral compound. The exposure of the viral genome can result in its rapid degradation or, alternatively, can enhance the formation of the nuclear episome, thus having a major impact on HBV infection and persistence. These results are thus important for understanding fundamental mechanisms of HBV replication and persistence and for the ongoing pursuit of an HBV cure.


Asunto(s)
Hepatitis B , Virus no Clasificados , Antivirales/metabolismo , Antivirales/farmacología , Cápside/metabolismo , Proteínas de la Cápside/genética , Línea Celular , ADN Circular/genética , ADN Circular/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , Humanos , Nucleocápside/genética , Nucleocápside/metabolismo , Replicación Viral/genética , Virus no Clasificados/genética
11.
Emerg Microbes Infect ; 11(1): 1390-1393, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35481464

RESUMEN

Lassa fever (LF) is endemic to broad regions of West Africa. Infection with Lassa virus (LASV), the etiologic agent of LF, results in a spectrum of clinical signs in humans, including severe and lethal hemorrhagic disease. Person-to-person transmission occurs through direct contact with body fluids or contaminated bedding and clothing. To investigate transmission risk in acute LASV infection, we evaluated viral RNA and infectious virus obtained from conjunctival, nasal, oral, genital, and rectal swab specimens from guinea pigs modelling lethal and non-lethal LF. Viral RNA and infectious virus were detected in all specimen types beginning 8 days post infection, prior to onset of fever. In the pre-clinical and clinical period, virus was isolated from a subset of nasal, oral, genital, and rectal swabs, and from all conjunctival swabs. Overall, conjunctival and nasal specimens most frequently yielded infectious virus. These findings indicate mucosal transmission risk based on virus isolation from various sites early in infection and support potential utility of minimally invasive specimen evaluation by RT-qPCR for LASV diagnostics.


Asunto(s)
Fiebre de Lassa , Virus no Clasificados , Animales , Virus ADN/genética , Cobayas , Humanos , Virus Lassa/genética , ARN Viral/genética , Virus no Clasificados/genética
12.
Viruses ; 14(3)2022 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-35337001

RESUMEN

Mycoviruses are widely distributed across fungi, including the yeasts of the Saccharomycotina subphylum. This manuscript reports the first double-stranded RNA (dsRNA) virus isolated from Pichia membranifaciens. This novel virus has been named Pichia membranifaciens virus L-A (PmV-L-A) and is a member of the Totiviridae. PmV-L-A is 4579 bp in length, with RNA secondary structures similar to the packaging, replication, and frameshift signals of totiviruses that infect Saccharomycotina yeasts. PmV-L-A was found to be part of a monophyletic group within the I-A totiviruses, implying a shared ancestry between mycoviruses isolated from the Pichiaceae and Saccharomycetaceae yeasts. Energy-minimized AlphaFold2 molecular models of the PmV-L-A Gag protein revealed structural conservation with the Gag protein of Saccharomyces cerevisiae virus L-A (ScV-L-A). The predicted tertiary structure of the PmV-L-A Pol and other homologs provided a possible mechanism for totivirus RNA replication due to structural similarities with the RNA-dependent RNA polymerases of mammalian dsRNA viruses. Insights into the structure, function, and evolution of totiviruses gained from yeasts are essential because of their emerging role in animal disease and their parallels with mammalian viruses.


Asunto(s)
Virus Fúngicos , Totivirus , Virus no Clasificados , Virus ADN/genética , Virus Fúngicos/genética , Productos del Gen gag/metabolismo , Pichia/genética , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Saccharomyces cerevisiae/genética , Totivirus/genética , Totivirus/metabolismo , Virus no Clasificados/genética
13.
Viruses ; 14(3)2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35337043

RESUMEN

Gag virus-like particles (VLPs) are promising vaccine candidates against infectious diseases. VLPs are generally produced using the insect cell/baculovirus expression vector system (BEVS), or in mammalian cells by plasmid DNA transient gene expression (TGE). However, VLPs produced with the insect cell/BEVS are difficult to purify and might not display the appropriate post-translational modifications, whereas plasmid DNA TGE approaches are expensive and have a limited scale-up capability. In this study, the production of Gag VLPs with the BacMam expression system in a suspension culture of HEK293 cells is addressed. The optimal conditions of multiplicity of infection (MOI), viable cell density (VCD) at infection, and butyric acid (BA) concentration that maximize cell transduction and VLP production are determined. In these conditions, a maximum cell transduction efficiency of 91.5 ± 1.1%, and a VLP titer of 2.8 ± 0.1 × 109 VLPs/mL are achieved. Successful VLP generation in transduced HEK293 cells is validated using super-resolution fluorescence microscopy, with VLPs produced resembling immature HIV-1 virions and with an average size comprised in the 100-200 nm range. Additionally, evidence that BacMam transduction occurs via different pathways including dynamin-mediated endocytosis and macropinocytosis is provided. This work puts the basis for future studies aiming at scaling up the BacMam baculovirus system as an alternative strategy for VLP production.


Asunto(s)
VIH-1 , Virus no Clasificados , Animales , Baculoviridae/genética , ADN , Células HEK293 , VIH-1/genética , Humanos , Mamíferos , Virión/genética , Virus no Clasificados/genética
14.
Arch Virol ; 167(4): 1201-1204, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35246731

RESUMEN

The family Partitiviridae has five genera, among which is the genus Deltapartitivirus. We report here the complete genome sequence of a deltapartitivirus from red clover, termed "red clover cryptic virus 3" (RCCV3). RCCV3 has a bisegmented double-stranded (ds) RNA genome. dsRNA1 and dsRNA2 are 1580 and 1589 nucleotides (nt) in length and are predicted to encode an RNA-directed RNA polymerase (RdRP) and a capsid protein (CP), respectively. The RCCV3 RdRP shares the highest sequence identity with the RdRP of a previously reported deltapartitivirus, Medicago sativa deltapartitivirus 1 (MsDPV1) (76.5%), while the RCCV3 CP shows 50% sequence identity to the CP of MsDPV1. RdRP- and CP-based phylogenetic trees place RCCV3 into a clade of deltapartitiviruses. The sequence and phylogenetic analyses clearly indicate that RCCV3 represents a new species in the genus Deltapartitivirus. RCCV3 was detectable in all three tested cultivars of red clover.


Asunto(s)
Virus ARN , Trifolium , Virus no Clasificados , Genoma Viral , Filogenia , Virus ARN/genética , ARN Bicatenario/genética , ARN Viral/genética , Virus no Clasificados/genética
15.
Curr Opin Virol ; 52: 48-56, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34883443

RESUMEN

The genome sequence is the only characteristic readily obtainable for all known viruses, underlying the growing role of comparative genomics in organizing knowledge about viruses in a systematic evolution-aware way, known as virus taxonomy. Overseen by the International Committee on Taxonomy of Viruses (ICTV), development of virus taxonomy involves taxa demarcation at 15 ranks of a hierarchical classification, often in host-specific manner. Outside the ICTV remit, researchers assess fitting numerous unclassified viruses into the established taxa. They employ different metrics of virus clustering, basing on conserved domain(s), separation of viruses in rooted phylogenetic trees and pair-wise distance space. Computational approaches differ further in respect to methodology, number of ranks considered, sensitivity to uneven virus sampling, and visualization of results. Advancing and using computational tools will be critical for improving taxa demarcation across the virosphere and resolving rank origins in research that may also inform experimental virology.


Asunto(s)
Virus no Clasificados , Virus , Biología Computacional , Virus ADN/genética , Genoma Viral , Filogenia , Virus/genética , Virus no Clasificados/genética
16.
Viruses ; 13(10)2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34696369

RESUMEN

High throughput sequencing (HTS) has revolutionised virus detection and discovery, allowing for the untargeted characterisation of whole viromes. Viral metagenomics studies have demonstrated the ubiquity of virus infection - often in the absence of disease symptoms - and tend to discover many novel viruses, highlighting the small fraction of virus biodiversity described to date. The majority of the studies using high-throughput sequencing to characterise plant viromes have focused on economically important crops, and only a small number of studies have considered weeds and wild plants. Characterising the viromes of wild plants is highly relevant, as these plants can affect disease dynamics in crops, often by acting as viral reservoirs. Moreover, the viruses in unmanaged systems may also have important effects on wild plant populations and communities. Here, we review metagenomic studies on weeds and wild plants to show the benefits and limitations of this approach and identify knowledge gaps. We consider key genomics developments that are likely to benefit the field in the near future. Although only a small number of HTS studies have been performed on weeds and wild plants, these studies have already discovered many novel viruses, demonstrated unexpected trends in virus distributions, and highlighted the potential of metagenomics as an approach.


Asunto(s)
Metagenómica/métodos , Malezas/genética , Malezas/virología , Biodiversidad , Biología Computacional/métodos , Virus ADN/genética , Genoma Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenoma/genética , Plantas/genética , Plantas/virología , Virus/clasificación , Virus/genética , Virus no Clasificados/genética
17.
Viruses ; 13(10)2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34696452

RESUMEN

Human papillomavirus (HPV) is a significant health burden and leading cause of virus-induced cancers. However, studies have been hampered due to restricted tropism that makes production and purification of high titer virus problematic. This issue has been overcome by developing alternative HPV production methods such as virus-like particles (VLPs), which are devoid of a native viral genome. Structural studies have been limited in resolution due to the heterogeneity, fragility, and stability of the VLP capsids. The mouse papillomavirus (MmuPV1) presented here has provided the opportunity to study a native papillomavirus in the context of a common laboratory animal. Using cryo EM to solve the structure of MmuPV1, we achieved 3.3 Å resolution with a local symmetry refinement method that defined smaller, symmetry related subparticles. The resulting high-resolution structure allowed us to build the MmuPV1 asymmetric unit for the first time and identify putative L2 density. We also used our program ISECC to quantify capsid flexibility, which revealed that capsomers move as rigid bodies connected by flexible linkers. The MmuPV1 flexibility was comparable to that of a HPV VLP previously characterized. The resulting MmuPV1 structure is a promising step forward in the study of papillomavirus and will provide a framework for continuing biochemical, genetic, and biophysical research for papillomaviruses.


Asunto(s)
Cápside/química , Cápside/ultraestructura , Microscopía por Crioelectrón , Papillomaviridae/ultraestructura , Animales , Proteínas de la Cápside , Genoma Viral , Ratones , Modelos Moleculares , Proteínas Oncogénicas Virales , Papillomaviridae/genética , Infecciones por Papillomavirus/virología , Virus no Clasificados/clasificación , Virus no Clasificados/genética
18.
Viruses ; 13(10)2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34696456

RESUMEN

A novel mycovirus named Fusarium oxysporum alternavirus 1(FoAV1) was identified as infecting Fusarium oxysporum strain BH19, which was isolated from a fusarium wilt diseased stem of Lilium brownii. The genome of FoAV1 contains four double-stranded RNA (dsRNA) segments (dsRNA1, dsRNA 2, dsRNA 3 and dsRNA 4, with lengths of 3.3, 2.6, 2.3 and 1.8 kbp, respectively). Additionally, dsRNA1 encodes RNA-dependent RNA polymerase (RdRp), and dsRNA2- dsRNA3- and dsRNA4-encoded hypothetical proteins (ORF2, ORF3 and ORF4), respectively. A homology BLAST search, along with multiple alignments based on RdRp, ORF2 and ORF3 sequences, identified FoAV1 as a novel member of the proposed family "Alternaviridae". Evolutionary relation analyses indicated that FoAV1 may be related to alternaviruses, thus dividing the family "Alternaviridae" members into four clades. In addition, we determined that dsRNA4 was dispensable for replication and may be a satellite-like RNA of FoAV1-and could perhaps play a role in the evolution of alternaviruses. Our results provided evidence for potential genera establishment within the proposed family "Alternaviridae". Additionally, FoAV1 exhibited biological control of Fusarium wilt. Our results also laid the foundations for the further study of mycoviruses within the family "Alternaviridae", and provide a potential agent for the biocontrol of diseases caused by F. oxysporum.


Asunto(s)
Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Fusarium/virología , Virus no Clasificados/genética , Virus no Clasificados/aislamiento & purificación , Virus Fúngicos/clasificación , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/aislamiento & purificación , ARN Bicatenario , ARN Viral/genética , ARN Polimerasa Dependiente del ARN , Virus no Clasificados/clasificación
19.
Viruses ; 13(9)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34578311

RESUMEN

The sole member of the Piscihepevirus genus (family Hepeviridae) is cutthroat trout virus (CTV) but recent metatranscriptomic studies have identified numerous fish hepevirus sequences including CTV-2. In the current study, viruses with sequences resembling both CTV and CTV-2 were isolated from salmonids in eastern and western Canada. Phylogenetic analysis of eight full genomes delineated the Canadian CTV isolates into two genotypes (CTV-1 and CTV-2) within the Piscihepevirus genus. Hepevirus genomes typically have three open reading frames but an ORF3 counterpart was not predicted in the Canadian CTV isolates. In vitro replication of a CTV-2 isolate produced cytopathic effects in the CHSE-214 cell line with similar amplification efficiency as CTV. Likewise, the morphology of the CTV-2 isolate resembled CTV, yet viral replication caused dilation of the endoplasmic reticulum lumen which was not previously observed. Controlled laboratory studies exposing sockeye (Oncorhynchus nerka), pink (O. gorbuscha), and chinook salmon (O. tshawytscha) to CTV-2 resulted in persistent infections without disease and mortality. Infected Atlantic salmon (Salmo salar) and chinook salmon served as hosts and potential reservoirs of CTV-2. The data presented herein provides the first in vitro and in vivo characterization of CTV-2 and reveals greater diversity of piscihepeviruses extending the known host range and geographic distribution of CTV viruses.


Asunto(s)
Enfermedades de los Peces/virología , Hepevirus/clasificación , Hepevirus/genética , Hepevirus/aislamiento & purificación , Animales , Canadá , Genotipo , Hepevirus/patogenicidad , Infección Persistente/virología , Filogenia , Salmo salar/virología , Salmón/virología , Trucha , Virulencia , Virus no Clasificados/clasificación , Virus no Clasificados/genética , Virus no Clasificados/aislamiento & purificación , Virus no Clasificados/patogenicidad
20.
J Gen Virol ; 102(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34554084

RESUMEN

A novel clade of RNA viruses was identified in the mammalian gastrointestinal tract by next-generation sequencing. Phylogenetically, these viruses are related to the genera Tombusviridae (plant viruses) and Flaviviridae, which includes mammalian, avian and insect hosts. Named in line with their characterization as stool-associated Tombus-like viruses, it is unclear if statoviruses infect mammals or are dietary in origin. Here, metagenomic sequencing of faecal material collected from a 10-week-old calf with enteric disease found that 20 % of the reads mapped to a de novo-assembled 4 kb contig with homology to statoviruses. Phylogenetic analysis of the statovirus genome found a clear evolutionary relationship with statovirus A, but, with only 47 % similarity, we propose that the statovirus sequence presents a novel species, statovirus F. A TaqMan PCR targeting statovirus F performed on faecal material found a cycle threshold of 11, suggesting a high titre of virus shed from the calf with enteric disease. A collection of 48 samples from bovine enteric disease diagnostic submissions were assayed by PCR to investigate statovirus F prevalence and 6 of 48 (12.5 %) were positive. An ELISA to detect antibodies to the coat protein found that antibodies to statovirus F were almost ubiquitous in bovine serum. Combined, the PCR and ELISA results suggest that statovirus F commonly infects cattle. Further research is needed to elucidate the aetiological significance of statovirus infection.


Asunto(s)
Enfermedades de los Bovinos/virología , Heces/virología , Tracto Gastrointestinal/virología , Enfermedades Intestinales/veterinaria , Enfermedades Intestinales/virología , Infecciones por Virus ARN/veterinaria , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Animales , Anticuerpos Antivirales/sangre , Bovinos , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenoma , Filogenia , Infecciones por Virus ARN/virología , Virus ARN/genética , Virus ARN/fisiología , Virus no Clasificados/clasificación , Virus no Clasificados/genética , Virus no Clasificados/aislamiento & purificación , Virus no Clasificados/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...